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Multiple Regression 

The Basics 

Multiple Regression (MR) 

 Predicting one DV from a set of 

predictors, the DV should be 

interval/ratio or at least assumed I/R if 

using Likert scale for instance 

 

Assumptions 

 Y must be normally distributed (no skewness 
or outliers) 
 

 X’s  
 do not need to be normally distributed, but if they 

are it makes for a stronger interpretation 
 

 linear relationship w/ Y 
 

 no multivariate outliers among Xs predicting Y 
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MV Outliers 

 Leverage – distance of score from 
distribution 
 

 Discrepancy – misalignment of score and 
the rest of the data  
 

 Influence – change in regression equation 
with and without value 
 

 Mahalanobis distance and 2 
 

Homoskedasticity 

 Homoskedasticity – variance on Y is 

the same at all values of X 

 

Multicollinearity/Singularity 

 Tolerance = 1 – SMC (Squared 

Multiple Correlation) 

 Low tolerance values <.01 indicate 

problems 

 Condition Index and Variance 

 Condition Index > 30 

 Plus variance on two separate variables 

> .50. 
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Regression Equation 

 What is a? 

 

 What are the Bs? 

 

 Why y predicted and not y? 

1 1 2 2' i iy a b x b x b x   

Questions asked by Multiple 

Regression 

Can you predict Y given the 

set of Xs? 

 Anova summary table – significance test 

 

 R2 (multiple correlation squared) – variation in Y 
accounted for by the set of predictors 
 

 Adjusted R2 – sample variation around R2 can only 
lead to inflation of the value.  The adjustment takes 
into account the size of the sample and number of 
predictors to adjust the value to be a better estimate 
of the population value. 
 

 R2 is similar to η2 value but will be a little smaller 
because R2 only looks at linear relationship while η2 
will account for non-linear relationships. 
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Is each X contributing to the 

prediction of Y? 

 Test if each regression coefficient is 

significantly different than zero given 

the variables standard error. 

 

 T-test for each regression coefficient,  

 

Which X is contributing the 

most to the prediction of Y? 

 Cannot interpret relative size of Bs because 
each are relative to the variables scale 
but Betas (standardized Bs) can be 
interpreted. 
 

 

 

 

 a being the grand mean on y 
a is zero when y is standardized 

1 1 2 2 3 3

1 1 2 2 3 3

'

' ( ) ( ) ( )

y a b x b x b x

Zy beta Zx beta Zx beta Zx

   

  

Can you predict future scores? 

 Can the regression be generalized to other 
data 
 

 Can be done by randomly separating a data 
set into two halves, 
 

 Estimate regression equation with one half 
 

 Apply it to the other half and see if it predicts 
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Sample size for MR 

 There is no exact number to consider 
 

 Need enough subjects for a “stable” correlation 
matrix 
 

 T and F recommend 50 + 8m, where m is the 
number of predictors 
 
 If there is a lot of “noise” in the data you may need more 

than that  
 

 If little noise you can get by with less 
 

 If interested generalizing prediction than you need 
at least double the recommended subjects. 

GLM and Matrix Algebra 

Ch. 17 and Appendix A (T and F) 

General Linear Model 

 

 

 

Think of it as a generalized form of regression 

 

1 1 2 2i i j jiy a b x b x b x     

Regular old linear regression 

 With four observations                                        is: 
 

 

 

 

 

 

 

 

𝑦 1 =  𝑏𝑥11 +  𝑎 + 𝜀1
𝑦 2 =  𝑏𝑥12 +  𝑎 + 𝜀2
𝑦 3 =  𝑏𝑥13 +  𝑎 + 𝜀3
𝑦 4 =  𝑏𝑥14 +  𝑎 + 𝜀4

 

𝑦 = 𝑏1𝑥1𝑖 + a + 𝜀𝑖  
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Regular old linear regression 

 We know y and we know the predictor 

values, the unknown is the weights so 

we need to solve for it 

 This is where matrix algebra comes in 

Regression and Matrix 

Algebra 

 The above can also be conceptualized 

as: 

 

 

 

 

 

 But what’s missing?  

𝑦1

𝑦2

𝑦3

𝑦4

=

𝑥11

𝑥12

𝑥13

𝑥14

∗ 𝑏 +

𝜀1
𝜀2
𝜀3
𝜀4

 

4𝑥1 = 4𝑥1 ∗ 1𝑥1  
𝑑𝑎𝑡𝑎 = 𝐷𝑒𝑠𝑖𝑔𝑛 ∗ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠  

Regression and Matrix 

Algebra 

 We can bring the intercept in by simply altering 

the design matrix with a column of 1s: 

 

 

 

 

 

 

 

𝑦1

𝑦2

𝑦3

𝑦4

=

1 𝑥11

1 𝑥12

1 𝑥13

1 𝑥14

∗
𝑎
𝑏

+

𝜀1
𝜀2
𝜀3
𝜀4

  note: a is often called b0 

4𝑥1 = 4𝑥2 ∗ 2𝑥1 + 4𝑥1  
𝑑𝑎𝑡𝑎 = 𝐷𝑒𝑠𝑖𝑔𝑛 ∗ 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 + 𝐸𝑟𝑟𝑜𝑟  

4 1 4 2 2 1 4 1
( * )

x x x x
Y X B E 
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Column of 1s??? 

 In regression, if you regress an 

outcome onto a constant of 1s you get 

back the mean of that variable. 

 This only works in the matrix 

approach, if you try the “by hand” 

approach to regressing an outcome 

onto a constant you’ll get zero 

 Computer programs like SPSS, Excel, 

etc. use the matrix approach 

Example 

 Here is some 

example data 

taken from 

some of 

Kline’s slides 

Case Y X CONST

A 46 90 1

B 40 78 1

C 32 57 1

D 42 65 1

E 61 80 1

F 46 75 1

G 32 45 1

H 51 91 1

I 55 67 1

Mean 45 72 1

SD 9.785 15.091 0

Example - normal 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.634852293

R Square 0.403037433

Adjusted R Square 0.317757067

Standard Error 8.082373467

Observations 9

ANOVA

df SS MS F Significance F

Regression 1 308.726674 308.726674 4.726028384 0.066230335

Residual 7 457.273326 65.32476086

Total 8 766

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 15.3622393 13.89683242 1.105448985 0.305505467 -17.49854766 48.22302625 -17.49854766 48.22302625

X 0.411635565 0.189349746 2.17394305 0.066230335 -0.036105437 0.859376568 -0.036105437 0.859376568
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Example – constant only 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.979624982

R Square 0.959665105

Adjusted R Square 0.834665105

Standard Error 9.785192895

Observations 9

ANOVA

df SS MS F Significance F

Regression 1 18225 18225 190.3394256 2.4809E-06

Residual 8 766 95.75

Total 9 18991

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A

CONST 45 3.261730965 13.79635552 7.35719E-07 37.47843491 52.52156509 37.47843491 52.52156509

Example - normal 

SUMMARY OUTPUT

Regression Statistics

Multiple R 0.987887431

R Square 0.975921577

Adjusted R Square 0.82962466

Standard Error 8.082373467

Observations 9

ANOVA

df SS MS F Significance F

Regression 2 18533.72667 9266.863337 141.8583584 8.88246E-06

Residual 7 457.273326 65.32476086

Total 9 18991

Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 0 #N/A #N/A #N/A #N/A #N/A #N/A #N/A

X 0.411635565 0.189349746 2.17394305 0.066230335 -0.036105437 0.859376568 -0.036105437 0.859376568

CONST 15.3622393 13.89683242 1.105448985 0.305505467 -17.49854766 48.22302625 -17.49854766 48.22302625

Solving for Bs Matrix Style 

 In regular algebra you can solve for b 
y = x * b -> y/x = b 
 

 Another way to divide is to multiply by 1/x (inverse) 
 

 Can’t just divide in matrix algebra you must multiply 
by inverse of the X matrix: 
 

 B = Y * X-1 
 

 But in order to take the inverse the X matrix must be 
a square matrix (which rarely, if ever, happens) 
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Pseudoinverse 

 The pseudoinverse - A pseudoinverse is a matrix 
that acts like an inverse matrix for non-square 
matrices: 
 

 Example: The Moore-Penrose pseudoinverse  
 

 Apseudo-1=(A’A)-1 *A’ 
 

 The inverse of (A’A) is defined because it is square 
(so long as A is full rank, in other words no 
multicollinearity/singularity) 
 

Estimation 

 The goal of an estimator is to provide 

an estimate of a particular statistic 

based on the data 

 

 There are several ways to characterize 

estimators 

 

B Estimators 

 bias  

 

 an unbiased estimator converges to the 

true value with large enough sample size 

 

 Each parameter is neither consistently 

over or under estimated 
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B Estimators 

 likelihood 

 

 the maximum likelihood (ML) estimator is 

the one that makes the observed data 

most likely 

ML estimators are not always unbiased 

for small N 

 

B Estimators 

 variance 

 

 an estimator with lower variance is more 

efficient, in the sense that it is likely to be 

closer to the true value over samples 

 

 the “best” estimator is the one with 

minimum variance of all estimators 


