

The Basics

Multiple Regression (MR)

 Predicting one DV from a set of predictors, the DV should be interval/ratio or at least assumed I/R if using Likert scale for instance

Assumptions

- Y must be normally distributed (no skewness or outliers)
- X's
 - do not need to be normally distributed, but if they are it makes for a stronger interpretation
 - o linear relationship w/ Y
- no multivariate outliers among Xs predicting Y

MV Outliers

- Leverage distance of score from distribution
- Discrepancy misalignment of score and the rest of the data
- Influence change in regression equation with and without value
- Mahalanobis distance and χ2

Homoskedasticity

 Homoskedasticity – variance on Y is the same at all values of X

Multicollinearity/Singularity

- Tolerance = 1 SMC (Squared Multiple Correlation)
 - Low tolerance values <.01 indicate problems
- Condition Index and Variance
 - Condition Index > 30
 - Plus variance on two separate variables
 > .50.

Regression Equation

$$y' = a + b_1 x_1 + b_2 x_2 + b_i x_i$$

- What is a?
- What are the Bs?
- Why y predicted and not y?

Questions asked by Multiple Regression

Can you predict Y given the set of Xs?

- Anova summary table significance test
- R² (multiple correlation squared) variation in Y accounted for by the set of predictors
- Adjusted R² sample variation around R² can only lead to inflation of the value. The adjustment takes into account the size of the sample and number of predictors to adjust the value to be a better estimate of the population value.
- R² is similar to η² value but will be a little smaller because R² only looks at linear relationship while η² will account for non-linear relationships.

Is each X contributing to the prediction of Y?

- Test if each regression coefficient is significantly different than zero given the variables standard error.
 - o T-test for each regression coefficient,

Which X is contributing the most to the prediction of Y?

 Cannot interpret relative size of Bs because each are relative to the variables scale but Betas (standardized Bs) can be interpreted.

 $y' = a + b_1 x_1 + b_2 x_2 + b_3 x_3$

$$Zy' = beta_1(Zx_1) + beta_2(Zx_2) + beta_3(Zx_3)$$

 a being the grand mean on y a is zero when y is standardized

Can you predict future scores?

- Can the regression be generalized to other data
- Can be done by randomly separating a data set into two halves,
- Estimate regression equation with one half
- Apply it to the other half and see if it predicts

Sample size for MR

There is no exact number to consider

- Need enough subjects for a "stable" correlation matrix
- T and F recommend 50 + 8m, where m is the number of predictors
 - If there is a lot of "noise" in the data you may need more than that
 - If little noise you can get by with less
- If interested generalizing prediction than you need at least double the recommended subjects.

GLM and Matrix Algebra Ch. 17 and Appendix A (T and F)

General Linear Model

$$y = a + b_1 x_{1i} + b_2 x_{2i} + b_j x_{ji} + \varepsilon$$

Think of it as a generalized form of regression

Regular old linear regression

• With four observations $\hat{y} = b_1 x_{1i} + a + \varepsilon_i$ is:

 $\begin{array}{rcl} \hat{y}_{1} &=& bx_{11} \;+\; a + \varepsilon_{1} \\ \hat{y}_{2} &=& bx_{12} \;+\; a + \varepsilon_{2} \\ \hat{y}_{3} &=& bx_{13} \;+\; a + \varepsilon_{3} \\ \hat{y}_{4} &=& bx_{14} \;+\; a + \varepsilon_{4} \end{array}$

Regular old linear regression

- We know y and we know the predictor values, the unknown is the weights so we need to solve for it
- This is where matrix algebra comes in

Regression and Matrix Algebra

The above can also be conceptualized as:

$$\begin{vmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \end{vmatrix} = \begin{vmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \end{vmatrix} * |b| + \begin{vmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \varepsilon_{3} \\ \varepsilon_{4} \end{vmatrix}$$
$$|4x1| = |4x1| * |1x1|$$
$$|data| = |Design| * |Coefficients|$$

But what's missing?

Regression and Matrix

 We can bring the intercept in by simply altering the design matrix with a column of 1s:

 $|y_1|$ $|1 x_{11}|$ \mathcal{E}_1 y_2 $1 x_{12}$ |a|ε2 $* \begin{vmatrix} a \\ b \end{vmatrix} +$ = note: a is often called b₀ y_3 $1 x_{13}$ ε_3 ε_4 y_4 $1 x_{14}$ |4x1| = |4x2| * |2x1| + |4x1||data| = |Design| * |Coefficients| + |Error|V - (X * B) + F

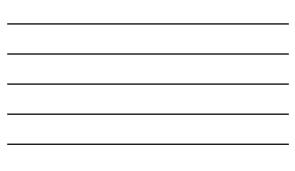
$$\begin{array}{c} \mathbf{I} - (\mathbf{A} \quad \mathbf{D}) + \mathbf{L} \\ 4x1 \quad 4x2 \quad 2x1 \quad 4x1 \end{array}$$

Column of 1s???

- In regression, if you regress an outcome onto a constant of 1s you get back the mean of that variable.
- This only works in the matrix approach, if you try the "by hand" approach to regressing an outcome onto a constant you'll get zero
- Computer programs like SPSS, Excel, etc. use the matrix approach

E	xample)		
Case	Y	х	CONST	
А	46	90	1	Here is some
В	40	78	1	example data
С	32	57	1	taken from
D	42	65	1	
E	61	80	1	some of
F	46	75	1	Kline's slides
G	32	45	1	
н	51	91	1	
1	55	67	1	
Mean	45	72	1	
SD	9.785	15.091	0	

[E>	kam	ole -	norr	nal				
SUMMARY OUTPU	г							
Regression S	tatistics							
Multiple R	0.634852293							
R Square	0.403037433							
Adjusted R Square	0.317757067							
Standard Error	8.082373467							
Observations	9							
ANOVA								
	df	SS	MS	F	Significance F			
Regression	1	308.726674	308.726674	4.726028384	0.066230335			
Residual	7	457.273326	65.32476086					
Total	8	766						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	15.3622393	13.89683242	1.105448985	0.305505467	-17.49854766	48.22302625	-17.49854766	48.22302625
х	0.411635565	0.189349746	2.17394305	0.066230335	-0.036105437	0.859376568	-0.036105437	0.859376568



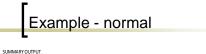
Example – constant only

SUMMARY	OUTPUT

Regression Statistics								
Multiple R	0.979624982							
R Square	0.959665105							
Adjusted R Square	0.834665105							
Standard Error	9.785192895							
Observations	9							

	df	SS	MS	F	Significance F
Regression	1	18225	18225	190.3394256	2.4809E-06
Residual	8	766	95.75		
Total	9	18991			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
CONST	45	3.261730965	13.79635552	7.35719E-07	37.47843491	52.52156509	37.47843491	52.52156509



Regression Statistics							
Multiple R	0.987887431						
R Square	0.975921577						
Adjusted R Square	0.82962466						
Standard Error	8.082373467						
Observations	9						

ANUVA						
	df		SS	MS	F	Significance F
Regression		2	18533.72667	9266.863337	141.8583584	8.88246E-06
Residual		7	457.273326	65.32476086		
Total		9	18991			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept	0	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A	#N/A
х	0.411635565	0.189349746	2.17394305	0.066230335	-0.036105437	0.859376568	-0.036105437	0.859376568
CONST	15.3622393	13.89683242	1.105448985	0.305505467	-17.49854766	48.22302625	-17.49854766	48.22302625

Solving for Bs Matrix Style

- In regular algebra you can solve for b
 y = x * b -> y/x = b
- Another way to divide is to multiply by 1/x (inverse)
- Can't just divide in matrix algebra you must multiply by inverse of the X matrix:

B = Y * X⁻¹

 But in order to take the inverse the X matrix must be a square matrix (which rarely, if ever, happens)

Pseudoinverse

- The pseudoinverse A pseudoinverse is a matrix that acts like an inverse matrix for non-square matrices:
- Example: The Moore-Penrose pseudoinverse
- Apseudo-1=(A'A)-1 *A'
- The inverse of (A'A) is defined because it is square (so long as A is full rank, in other words no multicollinearity/singularity)

Estimation

- The goal of an estimator is to provide an estimate of a particular statistic based on the data
- There are several ways to characterize estimators

B Estimators

- bias
 - an unbiased estimator converges to the true value with large enough sample size
 - Each parameter is neither consistently over or under estimated

B Estimators

- likelihood
 - the maximum likelihood (ML) estimator is the one that makes the observed data most likely
 - ML estimators are not always unbiased for small N

B Estimators

- variance
 - an estimator with lower variance is more efficient, in the sense that it is likely to be closer to the true value over samples
 - the "best" estimator is the one with minimum variance of all estimators