

The Basics

Multiple Regression (MR)

Predicting one DV from a set of predictors, the DV should be interval/ratio or at least assumed I/R if using Likert scale for instance

Assumptions

- Y must be normally distributed (no skewness or outliers)
- \blacksquare X's
	- \circ do not need to be normally distributed, but if they are it makes for a stronger interpretation
	- o linear relationship w/ Y
- no multivariate outliers among Xs predicting Y

MV Outliers

- **Leverage** distance of score from distribution
- Discrepancy misalignment of score and the rest of the data
- **n** Influence change in regression equation with and without value
- **Mahalanobis distance and** χ **2**

Homoskedasticity

Homoskedasticity – variance on Y is the same at all values of X

Multicollinearity/Singularity

- \blacksquare Tolerance = 1 SMC (Squared Multiple Correlation)
	- o Low tolerance values <.01 indicate problems
- Condition Index and Variance
	- \circ Condition Index > 30
	- o Plus variance on two separate variables > .50.

Regression Equation

$$
y' = a + b_1 x_1 + b_2 x_2 + b_i x_i
$$

- What is a?
- What are the Bs?
- Why y predicted and not y?

Questions asked by Multiple Regression

rCan you predict Y given the set of Xs?

- Anova summary table significance test
- $R²$ (multiple correlation squared) variation in Y accounted for by the set of predictors
- Adjusted R^2 sample variation around R^2 can only
lead to inflation of the value. The adjustment takes
into account the size of the sample and number of
predictors to adjust the value to be a better estimate
of th
- R² is similar to η² value but will be a little smaller
because R² only looks at linear relationship while η²
will account for non-linear relationships.

Γ Is each X contributing to the prediction of Y?

- Test if each regression coefficient is significantly different than zero given the variables standard error.
	- o T-test for each regression coefficient,

$\mathbf r$ Which X is contributing the most to the prediction of Y?

■ Cannot interpret relative size of Bs because each are relative to the variables scale but Betas (standardized Bs) can be interpreted.

y' =
$$
a + b_1x_1 + b_2x_2 + b_3x_3
$$

Zy' = $beta_1(Zx_1) + beta_2(Zx_2) + beta_3(Zx_3)$

 \blacksquare a being the grand mean on y a is zero when y is standardized

Can you predict future scores?

- Can the regression be generalized to other data
- Can be done by randomly separating a data set into two halves,
- \blacksquare Estimate regression equation with one half
- **Apply it to the other half and see if it predicts**

Sample size for MR

There is no exact number to consider

- Need enough subjects for a "stable" correlation matrix
- T and F recommend 50 + 8m, where m is the number of predictors
	- o If there is a lot of "noise" in the data you may need more than that
	- \circ If little noise you can get by with less
- If interested generalizing prediction than you need at least double the recommended subjects.

GLM and Matrix Algebra Ch. 17 and Appendix A (T and F)

General Linear Model

$$
y = a + b_1 x_{1i} + b_2 x_{2i} + b_j x_{ji} + \varepsilon
$$

Think of it as a generalized form of regression

Regular old linear regression

With four observations $\hat{y} = b_1 x_{1i} + a + \varepsilon_i$ is:

 $\hat{y}_1 = bx_{11} + a + \varepsilon_1$ $\hat{y}_2 = bx_{12} + a + \varepsilon_2$ $\hat{y}_3 = bx_{13} + a + \varepsilon_3$ $\hat{y}_4 = bx_{14} + a + \varepsilon_4$

Regular old linear regression

- We know y and we know the predictor values, the unknown is the weights so we need to solve for it
- **This is where matrix algebra comes in**

Regression and Matrix Algebra

■ The above can also be conceptualized as:

$$
\begin{vmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{vmatrix} = \begin{vmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{14} \end{vmatrix} * |b| + \begin{vmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{vmatrix}
$$

\n
$$
|4x1| = |4x1| * |1x1|
$$

\n
$$
|data| = |Design| * |Coefficients|
$$

But what's missing?

Regression and Matrix Algebra

 \blacksquare We can bring the intercept in by simply altering the design matrix with a column of 1s:

 $|y_1|$ y_2 $|y_3|$ $|y_4|$ = $|1 x_{11}|$ $1 x_{12}$ $1 x_{13}$ $1 x_{14}$ $\binom{a}{b}$ $|a|$ + ε_1 ε_2 ε_3 $|\varepsilon_4$ note: a is often called b_0 $|4x1| = |4x2| * |2x1| + |4x1|$ $|data| = |Design| * |Coefficients| + |Error|$ $Y = (X * B) + E$
 $4x1 = 4x2$ $2x1 + 4x1$ $Y = (X * B) + E$

Column of 1s???

- **In regression, if you regress an** outcome onto a constant of 1s you get back the mean of that variable.
- **This only works in the matrix** approach, if you try the "by hand" approach to regressing an outcome onto a constant you'll get zero
- Computer programs like SPSS, Excel, etc. use the matrix approach

Solving for Bs Matrix Style

- In regular algebra you can solve for b
 $y = x * b$ -> $y/x = b$
- Another way to divide is to multiply by $1/x$ (inverse)
- Can't just divide in matrix algebra you must multiply by inverse of the X matrix:

B = Y * X-1

But in order to take the inverse the X matrix must be a square matrix (which rarely, if ever, happens)

Pseudoinverse

- The pseudoinverse A pseudoinverse is a matrix that acts like an inverse matrix for non-square matrices:
- **Example: The Moore-Penrose pseudoinverse**
- **Apseudo-1=** $(A'A)^{-1} A'$
- The inverse of $(A'A)$ is defined because it is square (so long as A is full rank, in other words no multicollinearity/singularity)

Estimation

- The goal of an estimator is to provide an estimate of a particular statistic based on the data
- **There are several ways to characterize** estimators

B Estimators

bias

- o an unbiased estimator converges to the true value with large enough sample size
- \circ Each parameter is neither consistently over or under estimated

B Estimators

- **likelihood**
	- \circ the maximum likelihood (ML) estimator is the one that makes the observed data most likely
		- ML estimators are not always unbiased for small N

B Estimators

- **variance**
	- \circ an estimator with lower variance is more efficient, in the sense that it is likely to be closer to the true value over samples
	- \circ the "best" estimator is the one with minimum variance of all estimators